
www.manaraa.com

I N C E N S E :

A S Y S T E M F O R D I S P L A Y I N G D A T A S T R U C T U R E S

Brad A. Myers*
Xerox Palo Alto Research Center, California

A B S T R A C T

Many modern computer languages allow the
programmer to define and use a variety of data types.
Few programming systems, however, allow the
programmer similar flexibility when displaying the data
structures for debugging, monitoring and documenting
programs. Incense is a working prototype system that
allows the programmer to interactively investigate data
structures in actual programs. The desired displays c~/n
be specified by the programmer or a default can be used.
The default displays provided by Incense present the
standard form for literals of the basic types, the actual
names for scalar types, stacked boxes for records and
arrays, and curved lines with arrowheads for pointers. In
addition to displaying data structures, Incense also allows
the user to select, move, erase and redimension the
resulting displays. These interactions are provided in a
uniform, natural manner using a pointing device (mouse)
and keyboard.

CR Categories and Subject Descriptors: D.2.2 [Soft-
ware Engineering]: Tools and Techniques - Structured
Programming; User Interfaces; D . 2 . 5 [Software
Engineering]: Testing and Debugging - Debugging Aids;
Monitors; D.3.3 [Programming Languages]: Language
Constructs - Abstract Data Types; E.1 [Data Structures];
I.Y4 [Computer Graphics]: Graphics Utilities; 1.3.6
[Computer Graphics]: Methodology and Techniques
Interaction Tedmiques.

General Terms: Design, Human Factors, Languages.

*Author's current address: Three Rivers Computer Corporation,
720 Gross Street Pittsburgh, Pennsylvania, 15224

I. Introduction

Many modern computer languages allow the
programmer to define and use different data types. Few
programming systems, however, allow the programmer
similar flexibility when displaying these data structures in
debugging, monitoring and documenting programs.
Incense, a system written in and for the Pascal-like
language Mesa [19], allows the programmer to design and
use pictorial representations for the display of data
structures. 1

Strongly typed languages, such as Pascal [14] and
Mesa, allow the programmer to define new types using
the basic types supplied by the language. These new
types can then be used to declare variables. Other
languages, such as CLU [18] and Smalltalk [22], have the
definition of types and their operations as the central
programming paradigm. A data display system like
Incense would be a great asset to programmers using a
language of either type.

Modern Computer Science theory promotes the
value of information hiding, where only the relevant
information at a particular level should (or can) be
accessed at that level. Most modern languages promote
this method of programming. When debugging,
however, the programmer is typically restricted to viewing
the data at a very basic level. Just as the user of a real
number does not want to have to examine the bit patterns
used to represent the number, the user of a Ring Buffer or
Hash Table generally does not want to see the records,
arrays, and pointers used to implement them. Incense
therefore allows the programmer to define the display for
any type and have that display used whenever data of
that type is shown. Since a programmer may not want to
define displays for all (or possibly any) of the types used
in his program, an extensive set of default displays is also
provided.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0115 $00.75

llncense was designed and implemented at t_he Xerox Palo Alto
Research Center by the author. A full description can be found in
[2Ol.

115

www.manaraa.com

While the importance and utility of user-defined
displays is clearly evident for any computer environment,
the ability to create genuine pictures enhances Incense's
effectiveness considerably. The importance of pictures
can be understood by looking at a typical programmer's
bulletin board or note pad. When debugging a program
or explaining it to another person, the programmer is
likely to draw a plethora of pictures representing typical
cases or those under consideration. These pictures allow
the situation to be more easily understood. It is dear, for
example, that Figure 1 is easier to understand than Figure
2, and that the programmer is more likely to visualize and
draw the former. A guiding principle of Incense is to
automatically create displays that would be similar to
those the programmer might have drawn on paper.

[]

[]
[]

Figure 1.
Pictorial representation of a POINTER TO INTEGER 2.

p: 1276t

@1275:14
@1276:25
@1277:37
@1278:85

Figure 2.
Typical display for a POINTER TO INTEGER

in a character oriented system.

In some cases an even more pictorial representation
than Figure 1 may be useful. For example, bar graphs,
icons, tables and analogical pictures 3 are much more
evocative than the numbers on which they are based.
Frequently, these pictures will provide the right amount
of detail and can be understood much more quickly. For
example, a percent-done thermotneter (Figure 3), as a
representation for an iteration variable, allows instant
recognition of how much of the loop has been completed.

With the progress in computer hardware, creating
these pictures for debugging has become increasingly
economical. Many personal computers, such as the Xerox
Alto [24] and the Three Rivers PERQ [21], come with
powerful graphic displays that can be easily used by all
programs to make dynamic pictures.

2This figure and all others in this paper except 2, 3, 4 and 18 were
created by Incense and taken directly from the screen.

3pictures understood by analogy with the physical world.

Figure 3.
"Percent-done thermometer" as an analogical

representation for an iteration which is 80% complete.

The desired situation would be for the computer to
create or verify programs automatically and thereby
eliminate the need for debugging and for the displays of
data structures. Dijkstra claims that good programmers
could avoid all debugging if they would only use struc-
tured programming techniques [6]. Debugging, however,
is still very much a problem for programmers. In fact,
van Tassel claims that "a bug-free program is an abstract
theoretical concept" [25, p. 117]. The programmer
currently spends a great portion of his debugging time
trying to understand the state of the machine. I f the
computer automatically produced pictures of the data
structures, the programmer would be freed of one of the
more laborious parts of the debugging process.

Thus, better tools for dcbugging are needed. Since
the necessary support hardware is now generally
available, the time is ripe for a development of systems
that support pictorial, user-defined displays of data
structures such as provided by Incense.

II . Previous work.

The utility of graphical representations for program
concepts has long been known. Flow charts were an early
attempt at representing computer information graphically.
In addition, it was felt that they should be produced
automatically by a computer since the hand made
flowcharts were expensive and slow to produce,
inaccurate when drawn, and hard to maintain [16][10].

A number of systems have been built which can
create pictures for a program after the execution has
finished. Usually, code must be added to the source
program to define the output and then the program must
be run through some sort of pre- or post-processor
(examples are [4][26][3]). Some excellent algorithm
demonstration movies have been produced using this
technique [3][13], frequently at a fairly high cost. Other
systems have produced high quality dynamic real-time
displays for a limited set of types. For example, there
have been a number of tree display programs (e.g. [23])
and LISP list displays [7][17], but these are typically
restricted to a single, simple type of value at each node.
Knowlton [15] describes a system for L-6 that displays the
language's arbitrary field definitions.

116

www.manaraa.com

III. The Environment for Incense.

Incense was written on the Alto personal computer at
Xerox PARC. The Alto has a 875 by 603 pixel raster
scan display and a "mouse" pointing device with three
buttons. A cursor on the screen follows the mouse's
movements. Incense was written for the Mesa language.
The compiler for Mesa produces extensive symbol tables
for each program that provide full type information for
all constants and variables.

IV. The Incense system.

Unlike the systems described above, Incense can
automatically generate pictures for any data type during
the execution of an actual Mesa program. This is done in
real time without modifications to the source program.
The user need only specify at debug time the string name
of a variable to get a full pictorial display. If desired,
new, pictorial displays can easily be created and
associated with data structures. These user-defined
disph/ys can eliminate unnecessary detail or more
graphically depict the abstraction that the data structure is
implementing. The pictures are then displayed in real
time while the program is running. Monitoring
("animation") or static visualization o f program execution
at a high conceptual level is therefore possible. All input
from the user is supplied in a similar high level by using
the "mouse" pointing device to draw rectangles or select
displays.

A unique feature of Incense is the ability to provide
multiple displays, called Formats, for a single data
structure. The user might provide both iconic and
detailed representations so that detail can be eliminated
when not needed but still be available to implementers.
For each Format, the user can supply a number o f
Subformats, one of which is chosen automatically by
Incense based on the amount o f screen space given for
the particular display.

V. Design Considerations for Incense.

In designing a system to implement the ideas
mentioned above, two major problems had to be solved.
First, an appropriate structure had to be designed that
would be sufficiently powerful to allow very complex
displays to be created and used. It was important,
however, that this design make it easy to define and use
simple pictures. Second, a design for the display of
pointers had to be formulated. Pointers are a special
problem since the space used to display the referent has
to be specified. For records and arrays, the subpieces all
fit neatly inside the box for the aggregate, but for
pointers, the referent is displayed outside o f the pointer's
box.

As part o f the solution to the fi~t problem, Artists
are used, as discussed below. Layouts were invented to
solve the problems with pointers (discussed in section 7).
A run-time type system, described in [20], allows Incense

to discover the types o f all variables in programs using
the Mesa compiler's symbol tables. This makes it
possible for Incense to automatically display any structure
given only the name of the variable that holds it.

In order to have an element of data displayed in
Incense, an Artist must be associated with it. An Artist is
a collection o f procedures and data that handles the
display, erasure, and modification of the data. An Artist
is created for each aggregate structure (such as a record)
and for each data item, even if the data item is a field of
an aggregate structure. The association between the data
and the Artists to display them is maintained auto-
matically by Incense. "['he memory address and type of
the data, as well as other information, are stored as part
of the Artist's internal data. Five classes of procedures
are also stored in each Artist. There are procedures for
displaying the data, drawing arrows, erasing pictures and
arrows, selecting Artists, and editing the associated data
structures. Each of these will be discussed below in a
separate section.

VI. Display.

Although pictorial representations are easier to
understand, they are not always appropriate. For
example, the user of a Ring Buffer may want only to see
the display of Figure 4, but the implementer may need to
see the underlying basic types. Incense supports multiple
views of the same data through the use of Formats. Each
Artist has one or more Formats, each of which displays
the data in a different manner. For example, an Artist
for a Time record (Figure 5) might contain Formats for
displaying itself as a record (a) or a clock (b). Formats
are intended to be used for radically different ways of
viewing a data structure. The implementer of the Artist
defines the Formats, but the user specifies interactively
which Format to use in a particular display. If an
implementer wants to protect the internal representation
of a data structure from the client, he can supply an Artist
that only has a Format to display an iconic
representation.

The caller of an Artist Format procedure specifies
the area in which the display must fit_ Thus the user 4
always specifies the size and position of the display, and
Artists must be prepared to fit into any size rectangle.
Other data display systems have used very different
strategies. For example, in AMB1T/G, the displayed
objects always take a constant amount of space [5], and in
Smalltalk, the objects themselves decide how much space
to take [9]. The advantage of the Incense approach is that
the user's choice is never pre-empted, and aggregate
structures, such as records and arrays, can accurately
specify the position and size of subpa~.

4In the case of nested Artists used by aggregates such as records
and arrays, this is done by a procedure, as explained below.

117

www.manaraa.com

Figure 4.
Possible display for a ring buffer.

(This figure was not created by Incense).

h o u r s : 16]
~ i n : 25

[se,=,:,nJ s: 30

(a) (b)

Figure 5.
Two Formats for the record Artist for:

Time: RECORD [hours, min, seconds: INTEGER];
holding the time of day:

(a) as a normal record and (b) as an analog clock.

,_~.: 3
b: ',:~

=a: - 2
zb: T h i s is a ~ s t

i n t ~ r n a l R e c : ;c: TRUE
d: kl

(a)

To increase the flexibility of the displays and allow
all control to be procedural, each Format contains one or
more Subformats. Once the user specifies a Format, the
system then chooses one of that Format's Subformats.
This decision is based on various contextual information
such as the size of the area in which the display is to fit.
For example, the standard Artist Format for a Mesa
record has two Subformats (Figure 6). The first displays
the data at full size (a). I f insufficient room for the
display is provided, however, the second Subformat
would be invoked. It scales the record display so that it
will retain the same proportions as the original, yet still fit
in the box (b). The client is not allowed to specify which
Subformat should be used. Instead, the creator o f the
Artist associates a test with each Subformat. This test
determines whether the Subformat is applicable in the
current context. Since more than one of these tests may
succeed, the designer also specifies an ordering o f the
Subformats. I f none of the Subformat tests succeed, the
data is simply not displayed. This may happen, for
example, if the area in which the data is to be displayed is
very tiny.

The basic types of Mesa, including STRINGS,
INTEGERS, CARDINALS (positive INTEGERS), BOOLEANS,
CHARACTERS, REALS, PROCEDURES, UNSPECIFIEDS,
WORDS, a n d Enumerated Types (lists of n a m e s , e.g. {Mon,
Tues, Wed, Thurs, FRO), all h a v e d e f a u l t displays w h i c h use
text strings of the same form as the literals used by the
programmer. These are fully interpreted as can be seen
in Figure 7. Mesa uses a special representation for

(b)
Figure 6.

Two Subformats for a record: full size (a),

r~ -~l---:

and scaled proportionally and centered vertically inside a bounding rectangle (b).

UNSPEC,F,EO ,NTEGER

STRING ENUMERATED PROCEDURE

11,466916e+i.~l ~ ~ []
REAL CARDINAL BOOLEAN CHARACTER WORD

Figure 7.
Default boxed display for the basic types.

118

www.manaraa.com

subranges of the above types. Incense hides this
transformation so the programmer always sees the values
he would have typed into the program. There are two
Formats for Artists of each of the basic types. The first
draws a box around the value (as in Figure 7). This is
useful when the value is standing alone or when there is a
pointer to it (see Figure 1). The other Format does not
draw a box around the value. This is used in aggregate
structures such as records and arrays when boxes are
drawn around the entire field. For each Format of each
of the basic types, there are two Subformats. One
displays the value as a text string. This string is allowed
to be clipped slightly (Figure 8 (a) and (b)). I f there is
not enough room for a meaningful portion of the value to
be displayed, the second Subformat will be used which
displays a grey area which has a size proportional to the
string that would have been displayed (Figure 8 (c) and
(d)).

(a) (b) (c) (d)

Figure 8.
Demonstration that clipped strings do supply information:

(a) and (b) are values of BOOLEANS. Grey areas have
different lengths proportional to the size of the string:

(c) is for FALSE and (d) is for TRUE.

The Subformats of some Artists, such as those for
records, arrays, and pointers, can cause the display of
subordinate Artists. For example, the automatically
supplied Artist Subformat for a record will iterate
through the fields calling the appropriate Format in the
Artist for each. The record Subformat divides the
rectangle allocated for the display of the record among
the fields giving an appropriate portion to each. Thus,
the subordinate Artists are called with the same types of
arguments as the top level Artist, and the record
Subformat need not know, for example, whether the
subordinate is an integer, pointer, or even another record
(see Figure 9).

la: 3

ca: -2
cb: This is a t#st

[nternalRec: cc; TRUE

J: kl

(a)

£c, rmatSet : NN
] : : , r oc5 ;

t, y l - ' ,eID:
eu_-tdr:
pe~ent;

,d i sp layed: T R U E
d i s p l a y U s e d : F:~:.- I
Iselected; F A L S E
aa~v, AbsPos:

aayAbsPos:

(b)

Each record field actually consists of two Artists: one
for the field's name and one for the field's value. The
field's name and the value's type are discovered
automatically using the information from the Mesa
symbol tables [20]. The field name is displayed using an
Artist to make the interface more consistent. This has the
additional advantage that standard STRING Artists can be
used for the names. The field names therefore become
grey if the area is too small and can be selected and
redisplayed in the same manner as all other values (see
section 9). It has been suggested that the field names
should have special Formats that center the name
vertically in the area provided, or display it at the top of
the field's value. This would be a trivial modification and
could, in fact, be done by the user.

Arrays are handled in exactly the same manner as
records, except, of course, that there are no field names.
Special Artists could be created to provide the indices of
the values and/or to allow scrolling so that large arrays
could be easily handled. Both record and array Artists
store, as part of their internal data, the set of rectangles
used to specify the fields' positions. These rectangles are
defined at Artist creation time based on the types of the
values, and the length of the field name strings for
records. Making arrays display vertically or horizontally
is therefore accomplished simply by defining the
rectangles with the appropriate offsets (Figure 10). Thus
two-dimensional arrays are easily displayed (Figure 11).

The rectangles and other static information stored in
the Artists are called Form Data since they describe the
form of the picture. Other information stored in an
Artist, called Display Data, is generated when the Artist's
associated data structure is displayed. The Display Data
includes such things as the current screen position of the
the picture and whether or not it is selected.

. I f .
- , ' . . . q

• z, .~

'1" "

'r I-6 'I-.s I-4 14 I
(b)

Ca)

Figure 10.
Arrays oriented vertically (a) and horizontally (b).

Figure 9.
Two ways records can contain other records. Full size (a)
and reduced (b). The diagonal lines in (b) represent the

pointer value Nil.

Figure 11.
Two dimensional array:

ARRAY [1 _3] OF ARRAY [1 _4] OF INTEGER;

119

www.manaraa.com

VII. Displaying Arrows.

One of the most complex aspects of the Incense
design was choosing the best method for displaying
pointers. It was clear that they should be shown as
arrows, but the difficulty was deciding where to put the
data to which the pointer points (the referent). The
simplest technique would have been to require the user to
specify where each referent should go. For deep
structures, however, this would be very tedious. The
simplest automatic placement scheme was used by
AMBIT/G where the referent simply appeared at a pre-
determined, fixed position relative to the parent
irrespective of what might have been there previously
[11]. This method is not consistent with Incense's
philosophy of hierarchical rectangles and user control.
The most complextechnique would be to treat the screen
space like a heap memory and simply allocate and free
rectangles of display area. This has the potential for
maximal usage of the space. Unfortunately, this two-
dimensional space allocation problem is very complicated
and prone to poor performance. The specialized space
allocation techniques used in tree and list drawing
programs are also unworkable since they assume that all
nodes will be the same size. This is certainly not
necessarily the case in Incense.

The algorithm finally chosen for Incense is very
general and fast, but it does not allocate the screen space
as well as the general allocator described above. Layouts
were invented to hold the pointer and its referents.
When the user specifies a rectangle for the display of a
Layout, that rectangle is subdivided into rectangles to be
used by the arrow sources and all referents. Each
component rectangle is managed by a Layout Field. For
example, a Layout for a record containing two pointers
would have three fields: one for the record and one for
each referent (see Figure 12). Layouts and Layout Fields
are implemented as special Artists that have no associated
data; they exist solely to locate and manage the various
components. A user of Incense need never know of the
existence of Layouts and Layout Fields since they are
created and managed automatically by the system. Of
course, since Layouts are a special type of Artist, the user
is free to create his own type of Layouts if desired.

data: 4
less:
~res.ter:

(f0)

less: j j (fl)
~reol, er: / I

d a ~ : 10.,~
less: ..I j (f2)
~reater : / I

Figure 12.
Layout with 3 fields: one for record: (f0), and one for each

referent: (fl) and (f2).

Currently, Layouts use a very simple scheme for
assuring that all the subcomponents fit into the rectangle
specified for the Layout. As with records and arrays, the
rectangles for the various fields (the Form Data) are fully
specified at Artist creation time. When the Layout is
displayed, the subcomponents are simply instructed to fit
into the appropriate Layout Field rectangle. In a deep
recursive structure such as Figure 13, the displays get
progressively smaller as the nesting level increases. This
theoretically would allow an arbitrarily deep structure to
be displayed in a finite space, but, in fact, display ceases
after the pictures become smaller than a threshold size.

When a Artist Subformat for a pointer is called, it
first checks to see if the pointer's value is NIL. If so, a
diagonal line is drawn through the box for the pointer.
This is consistent with the LISP community's usual
pictorial representation of NIL. Otherwise, the Subformat
checks every Artist on the screen to see if any are
associated nvith the referent. If so, the pointer is referring
to data that has already been displayed, and an arrow is
simply drawn to this occurrence (Figures 14 and 15).
This mechanism also handles the case where a pointer
refers to values inside aggregates (Figure 16). I f the
referent is not currently displayed, the pointer Artist must
arrange for the correct Layout Field's Artist to display the
referent so an arrow can be drawn to it.

This process can best be explained by using an
example. Suppose a record contains a POINTER TO
CARDINAL and an integer (Figure 17). When the user
requests a display for a record of that type, the system
first notices that it contains pointers. A Layout is
therefore created with two Layout Fields (Figure 18 gives
the Artist hierarchy). The Layout is then ordered to
display itself in the rectangle specified by the user. The
Layout tells the first Layout Field to display. This Field,
in turn, calls the appropriate Format in the record Artist.
Now the record begins to display itself in the manner
described earlier. When the pointer Artist is finally
called, it will discover that its referent (the CARDINAL) has
not yet been displayed. The Layout responsible for this
pointer must therefore be found since only it knows
where the referent should be placed. The pointer Artist
will therefore send a message up the Artist hierarchy to
find the Layout that will handle its referent. The message
will go first to the record Artist, then to Layout Field 1,
and finally to the Layout. The Layout, upon receiving
this message, causes Layout Field 2 to be displayed
which, in turn, causes an Artist for the CARDINAL to be
created and displayed. If this had been a more complex
structure, such as the recursive structure of Figure 13,
more Layouts and Artists would have been created and
displayed at this point. An Artist is not created for a data
structure if the pointer to it is NIL. This is obviously
important for recursive structures since otherwise an
infinite number of Artists would be required.

120

www.manaraa.com

~----21data: 3

Figure 13. Deep recursive tree display demonstrating how elements get smaller.
Overall structure, however, is easily understood.

pl:int: - 2 t ~ 5 ~

Figure 14.
ARRAY [1 ..4] OF POINTER w i th two POINTERS

referring to the same value.

/ z ~ 0 a t a : z A
less: ~ I

data: 3

less:
~reater:

kreater:

Figure 15.
This erroneous tree structure demonstrates that a pointer

to previously displayed object does not generate a new
copy. The second arrow is drawn to the first occurrence.

I (a) l 1

~-~wei~rrt~ I75
Mye,,

Figure 16.
Pointer to value inside a record (a) does not get confused

with a pointer to the record itself(b).

Figure 17.
Incense display for

RECORD [int: INTEGER, p l : POINTER TO CARDINAL].

Layout

Layout Field i) • Layout field 2

i n ~

Figure 18.
Artist hierarchy that would be created for:

rec: RECORD [pl : POINTER TO CARDINAL, int: INTEGER];
(This figure was not created by Incense).

IlozTNome: Myers
[initial: 'B

las*.Name: Myers
iniu.sl: 'B

Figure 19.
Demonstration of the advantage of curved lines used in

Incense (a) over straight lines (b). The control points used
to specify the spline are shown as black squares in (a).

121

www.manaraa.com

Figure 20.
Selections (shown by black areas) moving up the Artist

hierarchy: from record field (a) to record (b) to Layout for
record (c) to Layout for everything (d).

(a)

Upon completion of the display of Layout Field 2,
the Layout returns control to the original pointer Artist
with the Layout Artist as the return value. The pointer
Artist now sends a different message to the Layout
requesting the address of the actual Artist associated with
the CARDINAL. This message is passed down the Artist
hierarchy from the Layout to Layout Field 2 and finally
to the CARt31NAL's Artist. If there had been more
Layouts, Layout Fields, and records under Layout Field
2, as there would be for recursive structures, this message
would have had to pass through more levels. In any case,
the POINTER now knows which Artist is associated with its
referent and that the referent has been displayed.
Finally, the POINTER Artist can find out where the
referent is on the screen, and an arrow is drawn from the
pointer's box to that o f the referent.

The actual arrow itself is a curved line called a spline
[1]. At the end of the spline, an arrowhead is drawn. The
size of the arrowhead is adjusted to insure that it is never
bigger than the destination box. The spline is defined by
seven control points placed along the arrow's path. Three
are placed in a straight horizontal line near the source
and three near the destination (Figure 19). Three are
needed at each end to insure that the curves approach the
end points from the correct direction. Another control
point is then placed between the ends to make the spline
smoother. Splines were chosen rather than straight lines
since they are more attractive and are less easily confused
with other lines in the picture (see Figure 19).

The default destination points for arrows to Artists of
the basic types are at the center of their left side, For
records and arrays, however, the destination points are
calculated as the center of the left side of the first field.
Since the user is flee to re-arrange the rectangles for the
fields (see section 11)~ the arrow end points are stored as
part of the Form Data. Thus if the fields are rearranged,
the user can simply supply a new set o f destination points
for the arrow. When the record or array is displayed, the
actual screen points for that instance are calculated. This
is done before any of the fields are displayed in case a
field contains a POINTER back to the record or array itself.

VIII. Erasure.

In addition to display, Artists support a number o f
other operations. One of these is erasure. An erased
Artist 5 can be redisplayed with a new size, location, and
Format. There is an erase .procedure for each Subformat
of an Artist since only the Subformat knows exactly how
the data structure was displayed. The Artist's erase
procedure therefore calls the internal erase procedure for
the Format and Subformat with which the Artist was
displayed. This internal erase procedure will first call the
erase procedures in any subordinate Artists. Then, the
screen area for the Artist will be painted white, 6 and then
any arrows are erased by redrawing them with white.
Arrows must be erased explicitly since they will lie
outside of the rectangle tbr the POINTER.

IX. Selection.

Incense was designed to be used interactively.
Therefore, the user needs to be able to refer to various
displays on the screen to allow them to be erased,
redisplayed or modified. Many systems require that the
user name the display either by tracing from some root
(e.g. First*.greatert.lessert.greater*.greater*.greatert.value) or
by using some arbitrary labels. Fortunately, Incense runs
on a computer that provides a much more natural
method for referring to displays. The mouse is a pointing
device that moves a cursor around on the screen [8]. All
the rectangles for the display are specified using the
mouse. In addition, pressing one o f the mouse buttons
tells Incense to select the Artist to which the cursor
points. The selected Artist is shown visually by video
reversal (see Figure 20). There can only be one Artist
selected at a time; however, due to the hierarchical nature
of Artists, there are typically many Artists at any point on
the screen. For example, with an integer in a record in a

5"Artists" here and in later sections will be used to refer both to
the object that controls data display and the picture on the s c r e e n
that the Artist creates.

6The pictures are drawn in black on a white background as shown
in this paper.

122

www.manaraa.com

Computer Graphics Volume 17, Number 3 July 1983

,.'ei Kht: 175 I
tlqo~r,e: M~,ers 1

[initiel: 'B " |
(a) 1 I

(b) (c)

Figure 21.
Normal display for record (a), form defined by user (b),

and resulting display (c).
Note that field order has been switched.

Layout, pointing to the integer could refer to the integer,
the record, the Layout Field, or the Layout. Incense
solves this problem by having the smallest (in screen area)
Artist selected. In order to select a larger, enclosing
Artist, it is simply necessary to re-select the Artist which
is already selected. Thus, for example, a pointer value in
a record field might be selected (Figure 20a). I f some
other field was then selected, the selection would simply
move there. If the original pointer was selected again,
however, the entire record that contained that pointer
would be selected (Figure 20b). Next, the Layout
containing the record would be selected (c), and finally,
the Layout enclosing everything would be selected (d). I f
this outermost Layout was selected again, everything
would be deselected.

Since Incense frequently displays values using grey
areas, selection is very important. The user can display a
large structure, select the part of it that he thinks is
important, and then have that portion redisplayed using a
larger area. Since it is so easy to select and redisplay
Artists, the decision to use a simple, fast space allocation
algorithm is shown to be justified.

X. Editing.

Once an Artist is selected, its value could be edited. 7
Unfortunately, editing is not yet supported by Incense.
In a future version, the user might select the Artist
associated with a BOOLEAN variable, type in FALSE, and
have the value of the variable change. Type checking of
the new values would be done along with the appropriate
conversions. For pointers, it would be appropriate to
allow the user to simply point to the display for the data
that will be the new referent. The system would then
discover the correct value for the pointer cell. Type
checking would be done in this case also. Different styles
for specifying new values other than type-in may also be
appropriate for other specialized displays. It is the job of
the edit routines in the Artist to handle these trans-
formations, the modification of the actual memory, and
the subsequent redisplay of the Artist.

XI. User-defined Artists.

The discussion of the previous sections has
concentrated on the default displays provided by Incense.
These are necessary for making the system usable and for
demonstrating its feasibility and power. A major goal of
Incense, however, is to make it easy for the user to specify
his own Artist styles (called Prototypes). This can
currently be done at two levels.

As was mentioned in section 6, aggregate Artists
store the rectangles used for the pieces as part of the
Form Data. It is very easy for the user to specify these
rectangles using the mouse (see Figure 21). I f desired,
the user is asked to point with the mouse to the corners of
each rectangle needed for the display. The rectangles
define the relative size and position of the various fields.
This technique can be used to eliminate some fields (by
giving them rectangles of zero size) or to favor the more
important fields. It would be useful to have a Forms
Editor program to help in aligning and positioning the
rectangles.

If a more radical change in display is desired (such as
the clock display in Figure 5), the user simply writes a
small program in Mesa defining the picture. Incense
provides a rich variety of display primitives and
parameterized procedures to aid in this process. Libraries
of Artist Prototypes can be kept so that new Prototypes
could be created through small modifications to existing
Artists. It is felt that this is a better strategy than
requiring the Alxist designer to learn an entirely new
language to define the desired pictures.

Once a Prototype has been created, the user can then
associate it with a specific variable, a type, or a basic type.
Thus, tbr:

Time: TYPE = RECORD [hrs, min, sec: INTEGER];
curTime: Time 4- [3, 30, 14];

a Prototype can be associated with the variable curTime,
the type Time, or the basic type RECORD. This gives the
user complete control over all displays in Incense.

7Editing is used here solely to mean modifying the value of some
data and not for modifying its display.

123

www.manaraa.com

XII. Current Implementation and Plans for the
Future.

The Incense system described here currently runs
only on Xerox Alto mini-computers that have 128K of
memory and special micro-code to handle floating point
operations. Incense has successfully demonstrated the
feasibility of user-defined and analogical displays for data
structures. Default displays currently exist for all the
basic types of Mesa, two-dimensional displays are used
for records and arrays, and arrows are used for POINTERS.
All of these displays are automatically created using the
type of the variable, so that no matter how complex a
variable is, the user need only type "Display X" and
specify a rectangle using the mouse. The display of a
basic type takes about 350 milleseconds, for a POINTER TO
INTEGER, 1.9 seconds, and for the complex structure of
Figure 13, 33.4 seconds. The mouse is used for specifying
all rectangles and for selection. The selected Artist can be
erased and redisplayed, but editing is not currently
supported by Incense. Reasonable defaults are computed
automatically for all field rectangles in aggregate
structures, and the user is free to define these rectangles
using the mouse if desired. The user can also define
displays by writing programs in Mesa. Finally, it is easy
to convert any display on the screen into a form that can
be printed as was done for this paper.

There are some places in Incense where a
reimplementation would allow a substantial decrease in
execution time and memory usage. Also, certain parts of
the system, such as the edit command, have yet to be
implemented. The major aspect of Incense that remains
unfulfilled, however, is the creation of special purpose
Artists for various types. Designs have already been
prepared for the displays of trees, list structures, stacks,
processes, hash tables, ring buffers (Figure 4), large arrays
and some other common data types. Iteration variables
(Figure 3) and other special purpose data items could also
have special displays. These would greatly enhance the
attractiveness of Incense to potential users. Finally,
Incense needs to be integrated with a full debugger that
can take advantage of Incense's power and flexibility.

The debugger would handle the specification of what
data should be displayed, possibly by having the user
point at the variable in a window holding the source text
of the program. The debugger could call Incense
frequently to incrementally monitor variables and thereby
"animate" the program's execution. If this is not
practical, Incense could simply be called to create static
displays at breakpoints. The parameters to Incense would
be the variable's string name, a symbol table context in
which that variable can be found (found based on the
run-time stack), and a rectangle for display. The
rectangle might be supplied by the user or the debugger
might have a standard window for data display. An
integrated environment using Incense-style displays has
been proposed in [12].

An Incense style display for data structures will be
useful to programmers no matter how a debugger is
organized. The pictures and the associated data structures
can be dynamically rearranged and modified. The
displays from Incense-like systems help the programmer
monitor and understand the execution of complex
programs. Since the user can specify the desired display,
the pictures created can be used to provide
documentation for the data structures themselves.
Finally, debugging will probably be more enjoyable when
using pictures rather than long strings of characters. This,
combined with the higher conceptual level provided by
the pictures, may make the debugging task easier and
thereby increase programmer productivity.

Acknowledgments.
I would like to thank Xerox PARC CSL and the MIT

Cooperative program for giving me the opportunity to work on this
project. Special thanks go to Dan Swinehart and Butler Lampson
of PARC for their design and implementation suggestions. John
Warnock of PARC supplied the underlying graphic system that
made this work possible and also helped with the design for
Layouts. Ed Satterthwaite of Xerox SDD provided a great deal of
support while I was creating the run-time type system needed by
Incense. Finally, I would like to thank Dan Swinehart, Warren
Teitelman, Ed Satterthwaite, David Reed, the referees, and many
others for helpful and thorough comments on this paper.

124

www.manaraa.com

REFERENCES

1. Ahlberg, J. H., Nilson, E. N., and Walsh, J. L. The Theory of
Splines and their Appli-calions. New York: Academic Press
(1967).

2. Baecker, Ron. Two Systems which Produce Animated
Representations of the Execution of Computer Programs. ACM
SIGCSE Bul-letin. Vol. 7, No. 1 (Feb. 1975). pp. 158-167.

3. Baecker, Ron. Sorting Out Sorting. 16ram color, sound, film.
25 minutes. Dynamic Graphics Project, Computer Systems Re-
search Group, University of Toronto, Toronto, Ontario (1981).
Presented at ACM SIGGRAPH Conference, Dallas, Texas
(Aug., 1981).

4. Balzer, R. M. EXDAMS -- EXtendable Debugging and
Monitoring System. Proceedings AFIPS Spring Joint Computer
Conference. 34 (1969). pp 567-580.

5. Christensen, Carlos. An Example of the Manipulation of
Directed Graphs in the AMBIT/G Programming Language.
Proceedings of the ACM Symposium on Interactive Systems for
Experimental Applied Mathematics, Washington, D.C. (August,
1967).

6. Dijkstra, Edsger W. The Humble Programmer. Communications
of the ACM. Vol. 15, No. 10 (Oct 1972). pp 859-866.

7. Dionne, M. S. and Mackworth, A. K. ANTICS: A System for
Animating LISP Programs. Computer Graphics and Image
Processing. Vol. 7 (1978). pp. 105-119.

8. English, W. K., Engelbart, D. C. and Berman, M. L. Display
Selection Techniques for Text Manipulation. IEEE
Transactions on Human Factors in Electronics. Vol. HFE-8,
No. 1 (March 1967).

9. Goldberg, A. and Robson, D. A Metaphor for User Interface
Desi,~n. Proceedings of the 12th Hawaii International Conference
on System Sciences 1979. Vol. 1 (1979). pp. 148-157.

10. Hain, G. and Hain, K. A general purpose automatic
flowcharter. Proc. Fourth Annual Meeting of UAIDE, New
York (Oct. 1965). pp. IV-i to 1V-12.

11. Henderson, D. Austin. A Description and Definition of Shnple
AMBIT/G--a Graphical Programming Language.. Wakefield,
MA: Massachusetts Computer Associates CA-6904-2811 (April
28, 1969). 32 pages.

12. Herot, Christopher P., Brown, Gretchen P., Carling, Richard T.,
Friedell, Mark, Kramlich, David, and Baecker, Ronald M. An
Integrated Environment for Program Visualization. Proceedings
of the IFIP WG 8.1 Working Conference on Automated Tools
for Infor-mation System Design and Development. New Orleans,
LA (January 26-28, 1982). H. J. Schneider and A. I.
Wasserman (eds). North Holland, Amsterdam, 1982.

13. Hopgood, F, R. A. Computer Animation Used as a Tool in
Teaching Computer Science. Proceedings of the 1974 IFIP
Congress, Applications Volume. (1974) pp 889-892.

14. Jensen, K. and Wirth, N. PASCAL User Manual and Report.
Englewood Cliffs, N.J.:Prentice-Hall (1975).

lS. Knowlton, K. C. L6: Bell Telephone Laboratories Low Level
Linked List Language. Two black and white films, sound. Bell
Telephone Laboratories, Murray Hill, New Jersey (1966).

16. Knuth, Donald E. Computer Drawn Flowcharts. Commu-
nications of the ACM. Vol. 6 No. 9 (Sept, 1963). pp. 555-563.

17. Laaser, William. Private conversation with the author (Nov. 9,
1979). System was built using DLISP which is described in
Warren Teitelman. Display Oriented Programmer's Assistant.
Palo Alto: Xerox PARC CSL-77-3 (March 8, 1977).

18. Liskov, Barbara, Snyder, Alan, Atkinson, Russell, and Schaffert,
Craig. Abstraction Mechanisms in CLU Communications of the
ACM. Vol. 20, No. 8 (Aug, 1977). pp. 564-576.

19. Mitchell, James, et al. Mesa Language Manual, Version 5.0.
Palo Alto: Xerox PARC CSL-79-3 (1979).

20. Myers, Brad A. Displaying Data Structures for Interactive
Debugging. Palo Alto: Xerox PARC CSL-80-7 (June, 1980). 97
pages.

21. Rosen, Brian. PERQ: A Commercially Available Personal
Scientific Computer. IEEE CompCom Digest (Spring, 1980).

22. Shoch, John F. An Overview of the Programming Language
Smalltalk-72. ACM Sigplan Notices. Vol. 14, No. 9 (Sept
1979). pp. 64-73.

23. Sweet, Richard. Appendix B: Implementation De-scription.
Empirical l:'stimates of Program Entropy. Palo Alto: Xerox
PARC CSL-78-3 (1978). pp. 85-96.

24. Thacker, C. P., McCreight, E. M., Lampson, B. W., SprouU, R,
F., and Boggs, D.R. Alto: A Personal Computer. Palo Alto~
Xerox PARC CSL-79-11 (August 7, 1979). 50 pages. Paper als0
appears in Siewiorek, Bell and NeweU, Computer Structures:
Readings and Examples, second edition.

25. van Tassel, Dennie. Program Style Design, Efficiency,
Debugging and Testing. Englewood Cliffs, N J: Prentice=Hall,
Inc. (1974). 256 pages.

26. Yarwood, FAward. Toward Program Illustration. University of
Toronto Computer Systems Research Group Technical Report
CSRG-84 (M. Sc. Thesis) (October 1977).

125

